Global Optimization of H_{∞} problems: Application to robust control synthesis under structural constraints

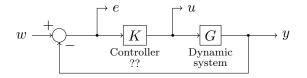
Dominique Monnet, Jordan Ninin, Benoît Clément *LAB-STICC* / *ENSTA-Bretagne*

Plan

1 Frequency constraints on systems and H_{∞} norm

2 Min max optimization

Problem statement

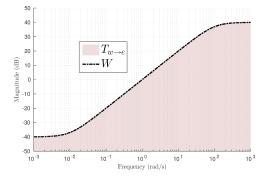


- The transfer function from w to e is denoted $T_{w \to e}(s)$, $e = T_{w \to e}w$.
- $T_{w \to e}(s)$ depends on K.
- Frequency constraint on $e: T_{w \to e}(i\omega) \le W(i\omega)$.
- $||.||_{\infty}$ is defined by: $||T_{w\to e}||_{\infty} = \sup_{\omega} \bar{\sigma}(T_{w\to e}).$

• If the system has one input, $\sup_{w \to e} \bar{\sigma}(T_{w \to e}) = \sup_{w \to e} (|T_{w \to e}|)$

Example of frequency constraint

Frequency constraint on $e: T_{w \to e}(i\omega) \leq W(i\omega)$.



This constraint is respected if $||T_{w \to e} W^{-1}||_{\infty} \leq 1$.

◆□▶ ◆□▶ ◆注▶ ◆注▶ 注: のへぐ

5/23

Problem considered

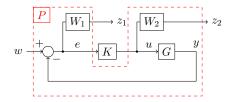
In our example, we want to find K such as:

$$\begin{cases} T_{w \to e}(i\omega) \leq W_1^{-1}(i\omega) \\ T_{w \to u}(i\omega) \leq W_2^{-1}(i\omega) \\ K \text{ stabilizes the closed-loop system} \end{cases}$$

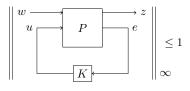
$$T_{w \to e}(i\omega) = \frac{1}{1 + G(i\omega)K(i\omega)}$$
$$T_{w \to u}(i\omega) = \frac{K(i\omega)}{1 + G(i\omega)K(i\omega)}$$

H_{∞} resolution

The classical way to solve this problem is to create an augmented system ${\cal P}$



and to solve the problem



Structural constraint

• Minimization of the H_{∞} norm under a stability constraint:

 \rightarrow usually formulated as a semi definite convex program (minimization of a linear objective under linear matrix inequality constraint).

• However, we impose a structural constraint on the controller:

$$K(s) = k_p + \frac{k_i}{s} + \frac{k_d s}{1+s}.$$

 \rightarrow The problem is no longer convex!

Min max problem formulation

As we consider a single input system, the problem can also be formulated as follow:

 $\begin{cases} \min_{k} \sup_{\omega} \max\left(\left| W_1(i\omega) T_{w \to e}(i\omega) \right|, \left| W_2(i\omega) T_{w \to u}(i\omega) \right| \right), \\ s.t. \quad K \text{ stabilizes the closed-loop system} \end{cases}$

Stability:

- ensure with the Routh-Hurwitz criterion.
- \rightarrow satisfaction of a polynomial system: $R(k_p, k_i, k_d) \leq 0$.

Plan

(1) Frequency constraints on systems and H_{∞} norm

2 Min max optimization

Min max problem formulation

۲

• Our optimization problem is the following:

$$\left\{ \begin{array}{l} \min_{k \in \mathbb{K}} \sup_{\omega \in [\omega]} f(k, \omega), \\ \\ s.t. \quad R(k) \leq 0 \end{array} \right.$$

where
$$f(k,\omega) = \max(|T_{w\to e}(i\omega)|, |T_{w\to u}(i\omega)|)$$
.
 \mathbb{K} is the set of possible coefficients of $k = \begin{pmatrix} k_p \\ k_i \\ k_d \end{pmatrix}$.

- $[\omega]$ is the domain of ω .

We solve the minimization problem with a branch and bound algorithm on k.

Main Branch and bound algorithm: minimization

Interval B&B algorithm:

While $\mathcal{L} \neq \emptyset$:

- **(1)** Choose a box k from \mathcal{L} .
- **2** Contract \boldsymbol{k} w.r.t $R(\boldsymbol{k}) \leq 0$.
- Sompute $[lb_{\mathbf{k}}, ub_{\mathbf{k}}]$ an enclosure of sup $\mathbf{f}(\mathbf{k}, \omega)$.
- **1** Try to find a good feasible solution in k.
- Update best current solution.

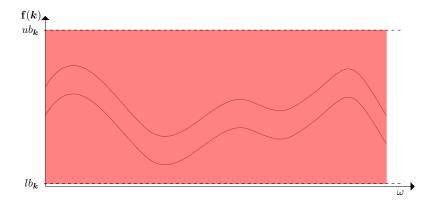
Stop criterion: $width(\mathbf{k}) < \epsilon$

Computing an enclosure of $\sup_{\omega} \mathbf{f}(\mathbf{k}, \omega)$

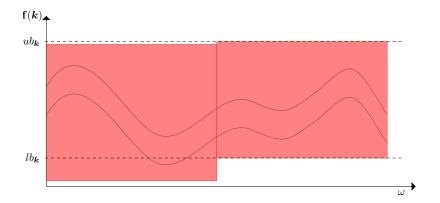
Given $\mathbf{k} \subseteq \mathbb{K}$, we need to compute an enclosure $[lb_{\mathbf{k}}, ub_{\mathbf{k}}]$ of $\sup_{\omega} \mathbf{f}(\mathbf{k}, \omega)$:

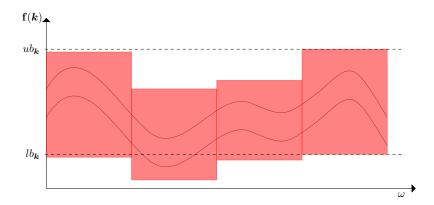
 \rightarrow We use a secondary branch and bounds algorithm.

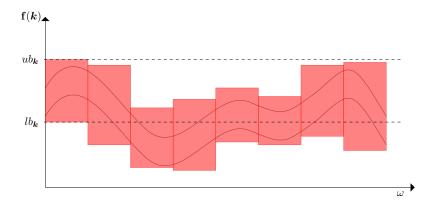
◆□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ <

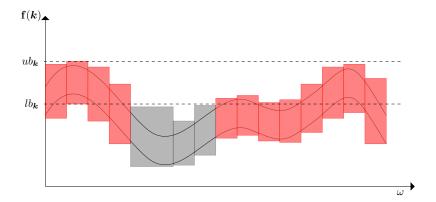


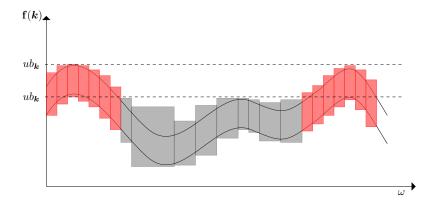
13/23











Inclusion properties

Let be $k \subseteq \mathbb{K}$, we denote

$$\mathbf{f}_{max}(\boldsymbol{k}) = \{\sup_{\omega} f(k,\omega), k \in \boldsymbol{k}\}$$

 $\boldsymbol{\omega}_{\boldsymbol{k},max} = \{ \omega \in [\omega] | \exists k \in \boldsymbol{k}, \, \omega \text{ maximize } f(k, \omega) \}$

Let be $k_1 \subset k$.

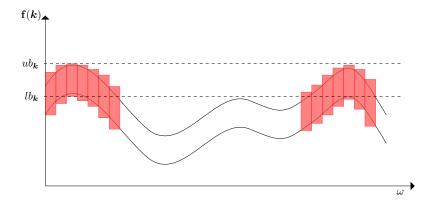
Proposition

•
$$\mathbf{f}_{max}(\mathbf{k}_1) \subseteq \mathbf{f}_{max}(\mathbf{k})$$

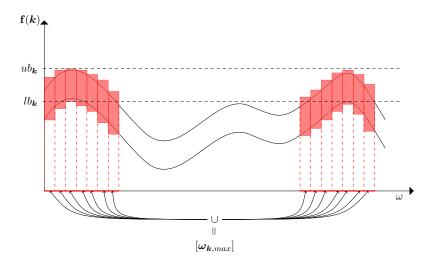
•
$$\boldsymbol{\omega}_{\boldsymbol{k}_1,max} \subseteq \boldsymbol{\omega}_{\boldsymbol{k},max}$$

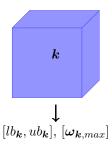
 \rightarrow These properties are used for each sub-box of B&B algorithm.

Inclusion properties

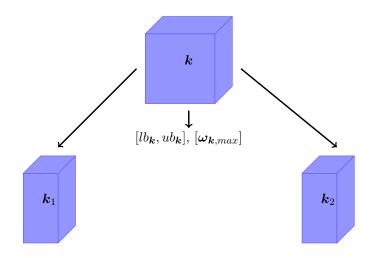


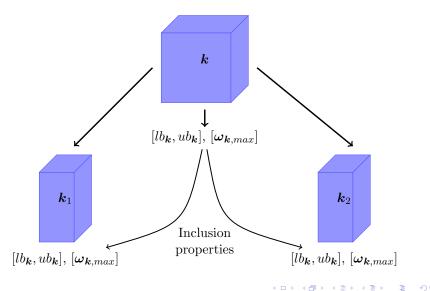
Inclusion properties

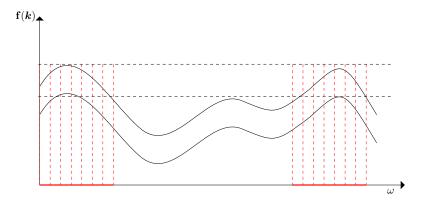


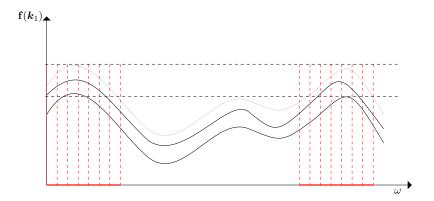


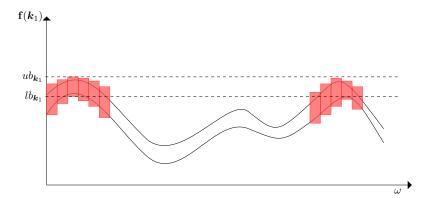
16/23

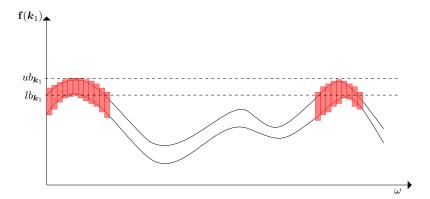






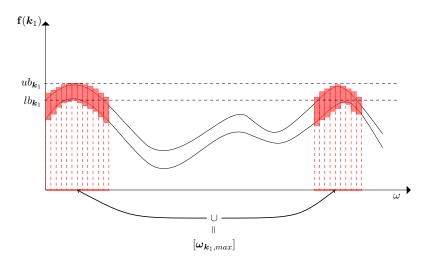




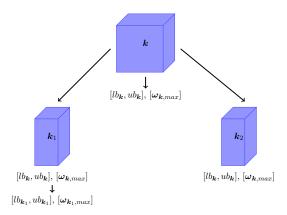


Conclusion

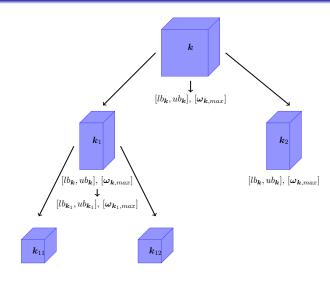
Main Branch and bound with Inclusion properties



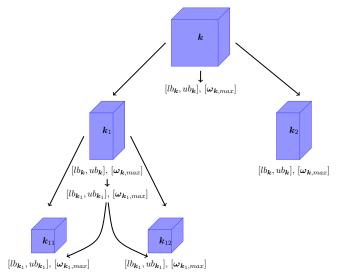
< □ ▶ < □ ▶ < ■ ▶ < ■ ▶ < ■ ▶ < ■ ▶ 17/23



・ロト ・回ト ・ヨト ・ヨト 2 18/23



・ロト ・回ト ・ヨト ・ヨト 2 18/23



・ロト ・四ト ・ヨト ・ヨト 2 18/23

Plan

(1) Frequency constraints on systems and H_{∞} norm

2 Min max optimization

Problem under study

We consider a second-order system controlled by a PID, with contraints on error and control signals:

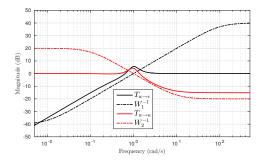
$$G(s) = \frac{1}{s^2 + 1.4s + 1}, \quad K(s) = k_p + \frac{k_i}{s} + \frac{k_d s}{1 + s}.$$
$$W_1(s) = \frac{s + 100}{100s + 1}, \qquad W_2(s) = \frac{10s + 1}{s + 10}.$$
Initial set of coefficient: $\mathbb{K} = \begin{pmatrix} [-10, 10] \\ [-10, 10] \\ [-10, 10] \end{pmatrix}, \ [\omega] = [10^{-2}, 10^2]$



20 / 23

Results

- In 13 mn, we proved that $\min_{k} \sup f(k, \omega) > 1$.
- Enclosure found in 1h 15 min: $\min_{k} \sup_{\omega} f(k, \omega) \in [1.5941, 1.9922]$, reached with $k_{p} = 0.584382 \ k_{i} = 0.566217$ and $k_{d} = -0.409415$.



Plan

(1) Frequency constraints on systems and H_{∞} norm

2 Min max optimization

Conclusion

- Taking advantage of Inclusion properties save computation time.
- We proposed a new approach to H_{∞} synthesis problem.
- We can prove that the problem is not feasible in a **guaranteed way**.