A Global Optimization Approach to Structured Regulation Design under H_{∞} Constraints

Dominique Monnet, Jordan Ninin, Benoît Clément *LAB-STICC*, *UMR 6285* / *ENSTA-Bretagne*

December 12, 2016

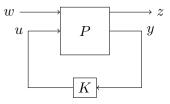
Introduction Global optimization approach: Branch and Bound H_{∞} norm of MISO systems Example Conc

Plan

1 Introduction

- 2 Global optimization approach: Branch and Bound
- (3) H_{∞} norm of MISO systems

Structured H_{∞} synthesis problem



P interconnected with K : $z=T_{w\rightarrow z}w$

Structured H_{∞} synthesis problem

$$\begin{cases} \text{Find } K \in \mathbf{K}_s \text{ such that } ||T_{w \to z}||_{\infty} \leq \gamma \\ \text{and } K \text{ stabilizes } T_{w \to z} \\ \text{or} \\ \begin{cases} \min_{K \in \mathbf{K}_s} ||T_{w \to z}||_{\infty} \\ \text{ subject to } K \text{ stabilizes } T_{w \to z} \end{cases} \end{cases}$$

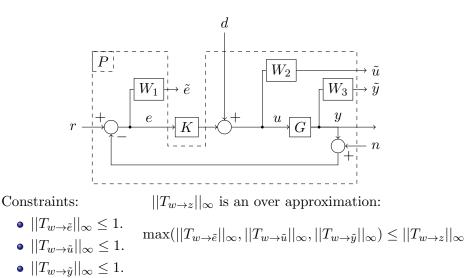
Problem solved?

$$||T_{w \to z}||_{\infty}$$

- Convex approaches (LMI).
- Non convex approaches based on local optimization.
- Non convex approaches based on global optimization→ only for SISO (polynomial formulation).

Global optimization for MIMO?

Almost possible



Almost possible

K(k,s) is a parametric rational function.

PID example:
$$K(k,s) = k_p + \frac{k_i}{s} + k_d s, \ k = (k_p, k_i, k_d)$$

Problem

 $\begin{cases} \text{Find } k \in \mathbf{k} \text{ such that } ||T_{w \to z_j}(k)||_{\infty} \leq \gamma, j \in \{1, ..., p\} \\ \text{and } K \text{ stabilizes } T_{w \to z} \end{cases}$ or $\begin{cases} \min_{k \in \mathbf{k}} \{\max_j ||T_{w \to z_j}(k)||_{\infty}\} \\ \text{subject to } K \text{ stabilizes } T_{w \to z} \end{cases}$

The global optimization algorithm provides:

- A guaranteed enclosure $[l_b, u_b]$ of the minimum.
- A good controller K.
- And a certificate of unfeasibility if $l_b > \gamma$.

Introduction Global optimization approach: Branch and Bound H_{∞} norm of MISO systems Example Conc

Plan

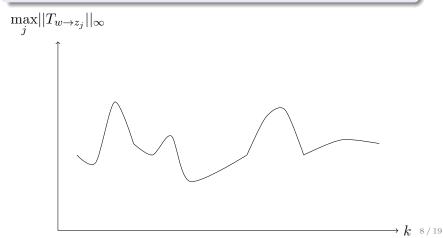
1 Introduction

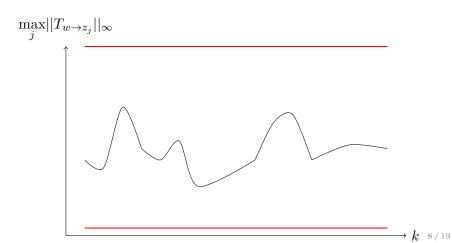
2 Global optimization approach: Branch and Bound

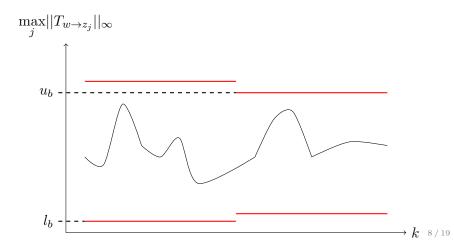
(3) H_{∞} norm of MISO systems

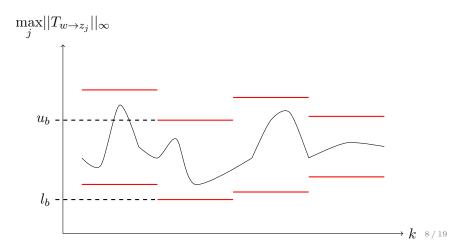
Minimization problem

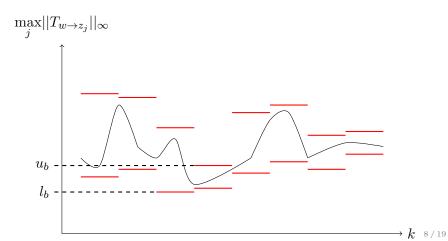
$$\min_{k \in \mathbf{k}} \left(\max_{j} || T_{w \to z_j}(k) ||_{\infty} \right)$$







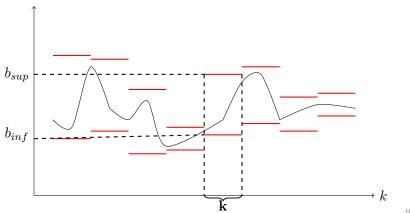




Enclosure of infinity norm of MISO

Problem

Find b_{inf} and b_{sup} such that: $b_{inf} \leq \max_{j} ||T_{w \to z_i}(k)||_{\infty} \leq b_{sup}, \forall k \in \mathbf{k}$



Plan

1 Introduction

- 2 Global optimization approach: Branch and Bound
- (3) H_{∞} norm of MISO systems

Expression of $||.||_{\infty}$ of MISO systems

 $T_{w \rightarrow z}(k,s)$ is a matrix of rational functions which maps w to $z \colon$

$$T_{w \to z}(k,s) = \begin{pmatrix} T_{w_1 \to z_1}(k,s) & \dots & T_{w_n \to z_1}(k,s) \\ \vdots & & \vdots \\ T_{w_1 \to z_p}(k,s) & \dots & T_{w_n \to z_p}(k,s) \end{pmatrix} = \begin{pmatrix} T_{w \to z_1}(k,s) \\ \vdots \\ T_{w \to z_p}(k,s) \end{pmatrix}$$
$$T_{w \to z_j}(k,s) = (T_{w_1 \to z_j}(k,s) & \dots & T_{w_n \to z_j}(k,s))$$

Proposition

$$||T_{w \to z_j}(k)||_{\infty} = \sup_{\omega \ge 0} \sqrt{\sum_{l=1}^{n} |T_{w_l \to z_j}(k, i\omega)|^2}$$

Demonstration

$$\begin{split} ||T_{w \to z_j}(k, s)||_{\infty} &= \sup_{\omega \ge 0} \{\sigma_{max}(T_{w \to z_j}(k, i\omega))\} \\ &= \sup_{\omega \ge 0} \sqrt{\lambda_{max}(T_{w \to z_j}(k, i\omega)T_{w \to z_j}(k, i\omega)^*)} \\ &= \sup_{\omega \ge 0} \sqrt{\lambda_{max}\left(\left(T_{w_1 \to z_j}(k, i\omega), \dots T_{w_n \to z_j}(k, i\omega)\right) \left(\frac{\overline{T_{w_1 \to z_j}(k, i\omega)}}{\overline{T_{w_n \to z_j}(k, i\omega)}}\right)\right)} \\ &= \sup_{\omega \ge 0} \sqrt{\sum_{l=1}^{n} |T_{w_l \to z_j}(k, i\omega)|^2} \end{split}$$

Maximization problem

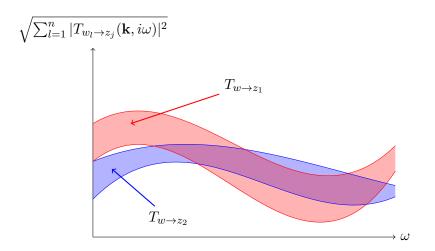
Problem

Find
$$b_{inf}$$
 and b_{sup} such that:
 $b_{inf} \leq \max_{j} ||T_{w \to z_i}(k)||_{\infty} \leq b_{sup}, \forall k \in \mathbf{k}$

$$\begin{split} \max_{j} ||T_{w \to z_{j}}(\mathbf{k})||_{\infty} &= \max_{j} \left\{ \sup_{\omega} \sqrt{\sum_{l=1}^{n} |T_{w_{l} \to z_{j}}(\mathbf{k}, i\omega)|^{2}} \right\} \\ &= \sup_{\omega} \left\{ \max_{j} \sqrt{\sum_{l=1}^{n} |T_{w_{l} \to z_{j}}(\mathbf{k}, i\omega)|^{2}} \right\} \end{split}$$

Use another branch and bound! \rightarrow Finite frequency range

2^{nd} Branch and Bound



2^{nd} Branch and Bound

$$\max_{j} \sqrt{\sum_{l=1}^{n} |T_{w_l \to z_j}(\mathbf{k}, i\omega)|^2}$$

2^{nd} Branch and Bound

$$\max_{j} \sqrt{\sum_{l=1}^{n} |T_{w_l \to z_j}(\mathbf{k}, i\omega)|^2}$$

$$b_{sup}$$

$$b_{inf}$$

$$\omega \to \omega$$

Min-Max formulation

The problem has a Min-Max formulation:

Min-Max Problem

$$\min_{k \in \mathbf{k}} \left(\sup_{\omega} \left\{ \max_{j} \sqrt{\sum_{l=1}^{n} |T_{w_l \to z_j}(k, i\omega)|^2} \right\} \right)$$

s.t. *K* stabilizes the system: $P(k) \le 0$

Complexity of a branch and bound: exponential.

 \rightarrow Branch and bound inside a branch and bound: Tricky problem.

Plan

1 Introduction

2 Global optimization approach: Branch and Bound

(3) H_{∞} norm of MISO systems

Introduction Global optimization approach: Branch and Bound H_{∞} norm of MISO systems **Example** Conc

$$w \xrightarrow{+} e \xrightarrow{k_i + \frac{k_i s}{1 + s}} u \xrightarrow{10s+1 \atop s+10} z_2$$

$$k_p \in [-10, 10], k_i \in [-10, 10], k_d \in [-10, 10]$$

Method	Cpu (s)	$ T_{w\to z} _{\infty}$	$\max_{j}(T_{w\to z_j} _{\infty})$
H_{∞} full	2	1.0258	1.0161
H_{∞} struct	73 (500 rand start)	1.0411	1.0411
H_{∞} hifoo	88 (30 rand start)	1.0349	1.0348
H_{∞} systume	73 (2.1e6 rand start)	1.0986	0.9912
GO struct	80	1.0811	[0.9496, 0.9947]

Plan

1 Introduction

- 2 Global optimization approach: Branch and Bound
- (3) H_{∞} norm of MISO systems

Conclusion

- Analytic expression of $||.||_{\infty}$ of MISO system (square root of a rational function).
- Lower bound on the minimum \implies we can prove that the CSP is not feasible.
- Another step towards structured robust synthesis? (yes).

$$G(\mathbf{\Delta}, s) \to \sup_{\omega, \Delta} \{ \max_{j} \sqrt{\sum_{l=1}^{n} |T_{w_l \to z_j}(k, \Delta, i\omega)|^2} \}$$